Soil Particle Heterogeneity Affects the Growth of a Rhizomatous Wetland Plant
نویسندگان
چکیده
Soil is commonly composed of particles of different sizes, and soil particle size may greatly affect the growth of plants because it affects soil physical and chemical properties. However, no study has tested the effects of soil particle heterogeneity on the growth of clonal plants. We conducted a greenhouse experiment in which individual ramets of the wetland plant Bolboschoenus planiculmis were grown in three homogeneous soil treatments with uniformly sized quartz particles (small: 0.75 mm, medium: 1.5 mm, or large: 3 mm), one homogeneous treatment with an even mixture of large and medium particles, and two heterogeneous treatments consisting of 16 or 4 patches of large and medium particles. Biomass, ramet number, rhizome length and spacer length were significantly greater in the treatment with only medium particles than in the one with only large particles. Biomass, ramet number, rhizome length and tuber number in the patchy treatments were greater in patches of medium than of large particles; this difference was more pronounced when patches were small than when they were large. Soil particle size and soil particle heterogeneity can greatly affect the growth of clonal plants. Thus, studies to test the effects of soil heterogeneity on clonal plants should distinguish the effects of nutrient heterogeneity from those of particle heterogeneity.
منابع مشابه
Facilitation by a Spiny Shrub on a Rhizomatous Clonal Herbaceous in Thicketization-Grassland in Northern China: Increased Soil Resources or Shelter from Herbivores
The formation of fertility islands by shrubs increases soil resources heterogeneity in thicketization-grasslands. Clonal plants, especially rhizomatous or stoloniferous clonal plants, can form large clonal networks and use heterogeneously distributed resources effectively. In addition, shrubs, especially spiny shrubs, may also provide herbaceous plants with protection from herbivores, acting as...
متن کاملSpatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.
Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairw...
متن کاملReproductive modes in Leiothrix (Eriocaulaceae) in south-eastern Brazil: the role of microenvironmental heterogeneity.
BACKGROUND AND AIMS The genus Leiothrix (Eriocaulaceae) is restricted to South America and contains 37 taxa. The genus is most species-rich in the mountains of Minas Gerais, where 25 species occur, 19 of them in the Serra do Cipó. Leiothrix taxa that inhabit different microhabitats exhibit a number of reproductive modes. Rhizomatous taxa produce seeds plentifully; therefore, this group were def...
متن کاملFate of Nitrogen-Fixing Bacteria in Crude Oil Contaminated Wetland Ultisol
The effect of crude oil on the growth of legumes (Calopogonium muconoides and Centrosema pubescens) and fate of nitrogen-fixing bacteria in wetland ultisol was investigated using standard cultural techniques. The results revealed observable effects of oil on soil physico-chemistry, plant growth and nodulation as well as on densities of heterotrophic, hydrocarbonoclastic and nitrogen fixing bact...
متن کاملEffects of Soil Oxidation-reduction Conditions on Internal Oxygen Transport, Root Aeration, and Growth of Wetland Plants
Characterization of hydric soils and the relationship between soil oxidation-reduction processes and wetland plant distribution are critical to the identification and delineation of wetlands and to our understanding of soil processes and plant functioning in wetland ecosystems. However, the information on the relationship between flood response of wetland plants and reducing soil conditions is ...
متن کامل